Experimental investigations of the soil-water characteristics of a volcanic soil

Author:

Ng Charles WW,Pang Y W

Abstract

Rain-induced landslides are common around the world. To analyse transient seepage and to predict pore-water pressure distribution in unsaturated slopes subjected to rainfall infiltration, it is essential to study soil-water characteristics and water permeability functions. The soil-water characteristic curve (SWCC) is a relationship between suction and water content or degree of saturation. Conventionally, only the drying soil-water characteristic curve of soil specimens is determined in a pressure-plate extractor without the application of any external stress. In this paper, the influences of initial dry density and initial water content, history of drying and wetting, soil structure, and the stress state upon the desorption and adsorption soil-water characteristics of a completely decomposed volcanic soil in Hong Kong are examined and discussed. The experimental results presented are obtained by using a conventional volumetric pressure-plate extractor and a newly modified one-dimensional stress-controllable pressure-plate extractor with deformation measurements. The SWCC of a recompacted specimen is very different from that of a natural specimen with the same initial soil density and initial water content. The SWCC of the recompacted specimen is highly dependent on the history of drying and wetting. The rates of desorption and adsorption are substantially higher at the first drying and wetting cycle than at the second drying and wetting cycle. The size of the hysteresis loop of the recompacted specimen is considerably larger than that of the natural specimens. The SWCC of soil is stress-state dependent. For recompacted specimens subjected to different stress states, the higher the applied stresses, the lower the rate of desorption and the smaller the size of the hysteresis loops. However, for natural specimens, the size of the hysteresis loops seems to be independent of the stress state. Under a higher applied stress, natural specimens exhibit lower rates of desorption and adsorption.Key words: volcanic soil, SWCC, drying and wetting, stress-state dependent.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3