Author:
Fraser Simon J.,Roussel Marc R.
Abstract
The transient and steady-state behaviour of the reversible Michaelis–Menten mechanism [R] and Competitive Inhibition (CI) mechanism is studied by analysis in the phase plane. Usually, the kinetics of both mechanisms is simplified to give a modified Michaelis–Menten velocity expression; this applies to the CI mechanism with excess inhibitor and to mechanism [R] in the product inhibition limit. In this paper, [R] is treated exactly as a plane autonomous system of differential equations and its true (dynamical) steady state is described by a line-like slow manifold M. Initial velocity experiments for [R] no longer strictly correspond to the hyperbolic law (as in the irreversible Michaelis–Menten mechanism) and this leads to corrections to the standard integrated rate law. Using a new analysis, the slow dynamics of the CI mechanism is reduced from a three-dimensional system to a planar system. In this mechanism transient decay collapses the trajectory flow onto a two-dimensional "slow" surface Σ; motion on Σ can be treated exactly as projected dynamics in the plane. This projected flow may differ in important ways from that of two-step mechanisms, e.g., it may lack a proper steady state. The relevance of these more accurate dynamical descriptions is discussed in relation to experimental design and metabolic function.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献