Stability of unsupported tunnels in clay

Author:

Eisenstein Z.,Samarasekera L.

Abstract

An overall long-term stability of unsupported shallow tunnels in overconsolidated clays which is directly related to the stand-up time is investigated. A new approach that combines finite element methods and the limit equilibrium theory is used to overcome limitations of current design practice. A more realistic initial stress field, unloading due to excavation, and variation of strength and modulus with depth are used. The pore-pressure change is analysed using a finite element model that incorporates an uncoupled consolidation theory. These pore pressures along with the previously obtained stress field are utilized to predict the variation of stability with time for given soil parameters such as strength and coefficient of earth pressure at rest. The results obtained employing a simple mechanism are presented using non-dimensional quantities. These results relate time, stability of the tunnel, and soil strength. The analysis showed that, under certain circumstances, the initial undrained stability may be of no practical value and may only be used as a starting point for more practical long-term stability. This procedure explains the stand-up time phenomenon in tunnels and may also be used in design as a direct tool for its evaluation. Key words : overconsolidated clay, long-term stability, stand-up time, shallow tunnels, finite elements, limit equilibrium.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3