Effectiveness factor of Pt utilization in cathode catalyst layer of polymer electrolyte fuel cells

Author:

Xia Zetao,Wang Qianpu,Eikerling Michael,Liu Zhongsheng

Abstract

In this work, we analyze effectiveness factors of Pt utilization in perfluorosulfonate ionomer (PFSI) bonded thin film cathode catalyst layers of polymer electrolyte fuel cells. We define the effectiveness factor of Pt utilization as the apparent rate of current conversion exhibited by a specific catalyst layer design divided by the ideal rate obtained if all Pt atoms were used equally in electrochemical reactions at the specified electrode overpotential and externally provided reactant concentrations. This definition includes statistical factors at all relevant scales as well as non-uniformities of reaction rate distributions under operation. Our model is based on the random composite agglomerated morphology of the catalyst layer. It accounts for the interplay of transport phenomena and electrochemical kinetics. At the mesoscopic scale, limited effectiveness of Pt utilization in agglomerates is mainly an electrostatic effect. We determined spatial distributions of effectiveness factors of agglomerates in the through-plane direction, and thereafter calculated overall effectiveness factors of the cathode catalyst layer. Our results show that small agglomerate radius, low operating current density, high operating temperature, and high oxygen partial pressure result in high effectiveness factors of Pt utilization. Finally, we compared PFSI-bonded thin film cathode catalyst layers with ultrathin two-phase cathode catalyst layers in terms of effectiveness factors. Including the surface to volume atom ratio of Pt nanoparticles, the two different types of structures exhibit similar effectiveness factors of Pt utilization, which are found to be distinctly below 10%.Key words: polymer electrolyte fuel cells, fuel cell modeling, cathode catalyst layer, Pt utilization, effectiveness factor.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3