Influence of short-term atmospheric CO2 enrichment on growth, allocation patterns, and biochemistry of black spruce seedlings at different stages of development

Author:

Campagna Michel A.,Margolis Hank A.

Abstract

Black spruce seedlings (Piceamariana Mill.) were exposed to either elevated (1000 ppm) or ambient (340 ppm) atmospheric CO2 levels at different stages of seedling development over a winter greenhouse production cycle. Seedlings germinated in early February and were placed in CO2 chambers for either 3 or 6 weeks during March, April, May, or August. Total seedling biomass increased under high CO2 conditions for the March, April, and May stages of development, but showed no significant response in August. The greater part of the CO2 response occurred during the second 3 weeks of exposure in March and April but during the first 3 weeks of exposure in May. In September, those seedlings exposed to CO2 in April and May had 30 and 14%, respectively, greater biomass than control seedlings, but seedlings from the other stages of development no longer had significant differences remaining from the CO2 treatment. This suggests that it could be very efficient to give a short well-timed CO2 pulse at the beginning of the production cycle in hopes of producing a size difference that is maintained throughout the remainder of the greenhouse production cycle under ambient levels of CO2. Short-term exposure to elevated CO2 also increased the ratio of shoot dry weight to total height for the March, April, and May stages of development. The ratio of total nonstructural carbohydrates to free amino acids was negatively correlated (r2 = 0.98) with the allocation of new growth between shoots and roots as measured by the allocation coefficient, k (milligrams shoot growth per milligrams root growth). As seedlings developed along their seasonal growth cycle, ratios of total nonstructural carbohydrates to free amino acids increased and the values for k decreased. The effect of CO2 enrichment on these two factors is discussed. Monitoring total nonstructural carbohydrate and free amino acid concentrations in foliage could have potential as a method to predict the percentage of carbon allocated to root systems of entire forest stands as well as of individual tree seedlings.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3