Affiliation:
1. Department of Forest Resources Management, The University of British Columbia, 2045-2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.
Abstract
Harvest scheduling decisions are made in an uncertain environment, and current modeling techniques that consider uncertainty impose severe difficulties when solving real problems. In this paper we describe a robust optimization methodology that explicitly considers randomness in most of the model coefficients while keeping the model computationally tractable. We apply the method to schedule harvest decisions when both timber yield and demand of two products are uncertain. Since uncertain coefficients must be independent, uniform, and symmetrically distributed, we only address uncertainty attributable to estimate errors of forecast models. The methodology was applied to a 245 090 ha forest in British Columbia, Canada. We compared the change in harvest decisions and objective function when robust solutions are implemented relative to deterministic solutions. Although probability bounds can be used to a priori define the probability of constraint violations, they produce conservative solutions. We therefore tested the rates of constraint violations by simulation. While traditional deterministic decisions were always infeasible when uncertain data were simulated, robust decisions were much less sensitive to uncertainty and were, to a large extent, protected against the occurrence of infeasibilities. In exchange, reasonable reductions in the objective function were observed.
Publisher
Canadian Science Publishing
Subject
Ecology,Forestry,Global and Planetary Change
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献