Electrical resistivity structure of the Flathead Basin in southeastern British Columbia, Canada

Author:

Gupta Jagdish C.,Jones Alan G.

Abstract

In June 1985, wide-band magnetotelluric data were acquired at 12 equally spaced sites along a 30 km profile crossing the Flathead (Kishenehn) Basin in southeastern British Columbia, Canada. These data have been modelled by both one-dimensional inverse techniques and two-dimensional forward trial-and-error fitting. The results indicate the presence in the area of the following three major zones of low electrical resistivity (10–500 Ω∙m):1. Sediments of the 10 km wide Flathead sedimentary basin, extending to a depth of about 2 km, dominate the responses in the middle of the profile.2. In the eastern part of the profile, in the area of the Lewis Range, a thin [Formula: see text] zone of low resistivity (35 Ω∙m) is imaged at a depth of some 3 km extending eastward from the edge of the basin. We associate this zone with the less dense thrusted Mesozoic clastic rocks lying directly below the Proterozoic rocks of the Lewis thrust sheet.3. Beneath the Flathead Basin is a third zone, of higher resistivity (500 Ω∙m), which extends to deep within the crust. This zone may originate from mantle upflow, as recently proposed to explain the existence of Cordilleran conductors in other localities. Additionally, to model the long-period geomagnetic transfer function responses, we are required to postulate the existence of a zone of low resistivity in the middle to lower crust, 50 km west of the survey line, corresponding to the location of the Rocky Mountain Trench.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3