Feasibility study of hydrogen-bonded nucleic acid base pairs in gas and water phases — A theoretical study

Author:

Arshadi S.1,Bekhradnia A.R.2,Ebrahimnejad A.1

Affiliation:

1. Department of Chemistry, Payame Noor University, 1935-4697, I.R. of Iran.

2. Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, Mazandaran University of Medical Sciences, Sari, Iran.

Abstract

To investigate the base pair binding probabilities for nucleic acid bases, numerous models were studied for contacts between adenine, thymine, guanine, cytosine, and uracil using density functional theory (DFT) in combination with the 6–311G* basis set. We obtained an assessment for the energy given by our calculations in gas and aqueous phases, which showed that it should be incorporated into hydrogen bonding and propeller rotational energies. The 42 complexes of base pairs (5 regular and 37 irregular base pairs) were proposed and their hydrogen-bonding (H-bonding) properties were verified. The hydrogen bonds in some irregular base pairs, including CC, UU, and TT (series 1), were stronger than in regular GC and AT base pairs. Also, the strength of the hydrogen bonds in the proposed base pairs, including CU, GG, GU, and TU (series 2), were similar to regular base pairs from an energetic point of view. The propeller rotations revealed a higher rotational barrier energy (6–7.5 kcal/mol; 1 cal = 4.184 J) for irregular base pairs (series 1 and 2) than regular GC and AT ones (1–3 kcal/mol). Nevertheless, the trend in these affinities of the complex contact probabilities and their biological properties were confirmed by our calculations.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3