Author:
Jamieson James C.,Wayne Steven,Belo Robert S.,Wright Jim A.,Spearman Maureen A.
Abstract
Myoblasts fuse to form multinucleated myotubes, one of the early steps in the formation of multinucleated muscle fiber. The fusion reaction is accompanied by biochemical differentiation resulting in the expression of a variety of enzyme activities and macromolecules, particularly creatine phosphokinase. The fusing myoblast is thus an excellent system for use in studies on the molecular basis of cellular recognition. This report focuses on the role played by glycoproteins in this process. It was found that alteration of cell-surface glycoproteins, using oligosaccharide-processing inhibitors that interfered with the synthesis of the high-mannose type of N-linked oligosaccharide, resulted in the inhibition of both the fusion reaction and biochemical differentiation as determined by measurement of creatine phosphokinase. Ketoconazole, compactin, and lovastatin, which affect dolichol and cholesterol biosynthesis, were also potent fusion inhibitors. These observations, coupled with earlier studies on the characterization of fusion-defective myoblast cell lines defective in glycoprotein biosynthesis, point to the importance of surface glycoproteins in cellular recognition in L6 myoblasts.Key words: myoblast, dolichol, glycoprotein, fusion, ketoconazole, compactin, lovastatin.
Publisher
Canadian Science Publishing
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献