Variety of nonsense suppressor phenotypes associated with mutational changes at conserved sites in Escherichia coli ribosomal RNA

Author:

Murgola Emanuel J.,Pagel Frances T.,Hijazi Kathryn A.,Arkov Alexey L.,Xu Wenbing,Zhao Song Q.

Abstract

To screen for ribosomal RNA mutants defective in peptide chain termination, we have been looking for rRNA mutants that exhibit different patterns of suppression of nonsense mutations and that do not suppress missense mutations at the same positions in the same reporter gene. The rRNA mutations were induced by segment-directed randomly mutagenic PCR treatment of a cloned rrnB operon, followed by subcloning of the mutagenesis products and transformation of strains containing different nonsense mutations in the Escherichia coli trpA gene. To date, we have repeatedly obtained only two small sets of mutations, one in the 3′ domain of 16S rRNA, at five nucleotides out of the 610 mutagenized (two in helix 34 and three in helix 44), and the other in 23S rRNA at only four neighboring nucleotide positions (in a highly conserved hexanucleotide loop) within me 1.4 kb mutagenized segment. There is variety, however, in the suppression patterns of the mutants, ranging from suppression of UAG or UGA, through suppression of UAG and UGA, but not UAA, to suppression of all three termination codons. The two helices in 16S rRNA have previously been associated both physically and functionally with the decoding center of the ribosome. The 23S region is part of the binding site for the large subunit protein L11 and the antibiotic thiostrepton, both of which have been shown to affect peptide chain termination. Finally, we have demonstrated that the 23S mutant A1093, which suppresses trpA UGA mutations very efficiently, is lethal at temperatures above 36 °C (when highly expressed). This lethality is overcome by secondary 23S rRNA mutations in domain V. Our results suggest that specific regions of 16S and 23S rRNA are involved in peptide chain termination, that the lethality of A1093 is caused by high-level UGA suppression, and that intramolecular interaction between domains II and V of 23S rRNA may play a role in peptide chain termination at the UGA stop codon.Key words: 16S and 23S rRNAs, PCR mutagenesis, nonsense suppression, peptide chain termination, intramolecular interaction.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3