Perturbation theory of the pair correlation function in molecular fluids

Author:

Henderson R. L.,Gray C. G.

Abstract

We study the perturbation theory of the angular pair correlation function g(rω1ω2)in a molecular fluid. We consider an anisotropic pair potential of the form u = u0 + ua, where u0 is an isotropic 'reference' potential, and for simplicity in this paper we assume the perturbation potential ua to be 'multipole-like', i.e., to contain no l = 0 spherical harmonics. We expand g in powers of ua about g0, the radial distribution function appropriate to u0. This series is examined by expanding ha = h−h0 (where h = g−1) and its corresponding direct correlation function ca in spherical harmonic components. We consider approximate summations of the series in ua that automatically truncate the corresponding harmonic series, so that the Ornstein–Zernike (OZ) equation relating ha and ca can be solved in closed form. We first expand ca = c1 + c2 + … where cn includes all terms in ca of order (ua)n. Taking ua to be a quadrupole–quadrupole interaction, we find that a 'mean field' (MF) approximation ca = c1 gives rise to only three nonvanishing harmonic components in ha, so that OZ is solved explicitly in Fourier space. The MF solution for multipoles of general order is given in an appendix. Graphical methods are then used to identify the class of all terms in the ua series that are restricted to the harmonic space defined by MF. A portion of this class can be summed by solving OZ with the closure ca = −βg0ua + h0(ha−ca), where β = (kT)−1, h0 = g0−1 This system is designated as generalized MF (GMF), and solved by numerical iteration. Numerical results from MF and GMF are presented for quadrupolar ua, taking u0 to be a Lennard-Jones potential. Symmetries imposed by the restricted harmonic space are foreign to the full g, yet harmonics within this space are sufficient for evaluation of many macroscopic properties. The results are therefore evaluated in harmonic form by comparison with the corresponding harmonic components of the 'correct' g as evaluated by Monte Carlo simulation.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3