Evaluation of the transitional inelastic behaviour of unsaturated clay–sand mixtures

Author:

Blatz James,Anderson David E.S,Siemens Greg

Abstract

This paper examines and compares the mechanical behaviour of two different unsaturated clay mixtures comprised of bentonite clay (Saskatchewan or Wyoming) and quartz sand. The two mixtures have been proposed as compacted barrier materials for reducing groundwater flow in the vicinity of waste disposal repositories. Triaxial specimens were compacted to consistent properties, and then specified suction conditions were applied to the specimens using the vapour equilibrium technique. Following equilibrium at the specified initial suction, specimens were subjected to isotropic and shear loading in a conventional triaxial cell to measure the mechanical response under selected stress paths. The results are interpreted in terms of the yield, strength, and stiffness behaviour at the various suction levels. Results suggest that the clay component of the mixture dominates the behaviour at suctions less than approximately 30 MPa, and the sand component dominates the behaviour above approximately 30 MPa. The transition from clay- to sand-dominated behaviour is attributed to volume strain during application of the initial suction bringing the sand particles into contact. The discussion highlights how the results can be used to modify constitutive models to incorporate the transitional behaviour in numerical modeling.Key words: inelastic, yielding, unsaturated, stress–strain, triaxial testing.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3