Classical analytical solution for Rydberg states of muonic–electronic helium and helium-like ions

Author:

Oks Eugene11

Affiliation:

1. Physics Department, Auburn University, Auburn, AL 36849, USA.

Abstract

In our previous papers (Can. J. Phys. 91 (2013) 715; 92 (2014) 1405), we studied Rydberg states of systems consisting of a nucleus of charge Z, a muon, and an electron, both the muon and electron being in circular states. The studies of such quasimolecules μZe were motivated by numerous applications of muonic atoms and molecules, where one of the electrons is substituted by the heavier lepton μ. We demonstrated that the muonic motion can represent a rapid subsystem, while the electronic motion can represent a slow subsystem. We showed that the spectral lines emitted by the muon in such systems experience a red shift compared to the corresponding spectral lines that would have been emitted by the muon in a muonic hydrogenic atom/ion. In the present paper, we also consider Rydberg states of quasimolecules μZe with Z > 1 (i.e., Rydberg states of muonic–electronic helium and helium-like ions). However, our current approach has important distinctions from our previous papers. The systems considered here are truly stable and the electron orbit is generally elliptical (although the relatively small influence of the electron on the muon is neglected). In our previous papers, the influence of the electron on the muon was taken into account; however, in the rotating frame used in our previous papers, the motion of the muon was only metastable (not truly stable), and furthermore, only circular orbits of the electron were considered in our previous paper. In the present paper, we show that the effective potential energy of the Rydberg electron is mathematically equivalent to the potential energy of a satellite moving around an oblate planet. Based on this, we demonstrate that the unperturbed orbital plane of the Rydberg electron undergoes simultaneously two different precessions: precession within the orbital plane and precession of the orbital plane around the axis of the muonic circular orbit. We provide analytical expressions for the frequencies of both precessions. The shape of the elliptical orbit of the Rydberg electron is not affected by the perturbation, which is the manifestation of the (approximate) conservation of the square of the angular momentum of the Rydberg electron. This means that the above physical systems have a higher than geometrical symmetry (also known as a hidden symmetry) which is a counterintuitive result of general physical interest. We note that the above problem of the motion of the Rydberg electron in muonic–electronic helium atoms or helium-like ions is mathematically equivalent to another problem from atomic physics: a hydrogen Rydberg atom in a linearly-polarized electric field of a high-frequency laser radiation.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3