Affiliation:
1. Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
2. Center for Research on Laser and Plasma, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
Abstract
The general parasupersymmetric annihilation operator of arbitrary order does not reduce to the Kornbluth–Zypman general supersymmetric annihilation operator for the first order. In this paper, we introduce an annihilation operator for a parasupersymmetric harmonic oscillator that in the first order matches with the Kornblouth–Zypman results. Then, using the latter operator, we obtain the parasupercoherent states and calculate their entanglement, uncertainties, and statistics. We observe that these states are entangled for any arbitrary order of parasupersymmetry and their entanglement goes to zero for the large values of the coherency parameter. In addition, we find that the maximum of the entanglement of parasupercoherent states is a decreasing function of the parasupersymmetry order. Moreover, these states are minimum uncertainty states for large and also small values of the coherency parameter. Furthermore, these states show squeezing in one of the quadrature operators for a wide range of the coherency parameter, while no squeezing in the other quadrature operator is observed at all. In addition, using the Mandel parameter, we find that the statistics of these new states are subPoissonian for small values of the coherency parameter.
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献