Sitka black-tailed deer (Odocoileus hemionus sitkensis) adjust habitat selection and activity rhythm to the absence of predators

Author:

Bonnot Nadège C.12,Morellet Nicolas1,Hewison A.J. Mark1,Martin Jean-Louis2,Benhamou Simon2,Chamaillé-Jammes Simon2

Affiliation:

1. INRA, UR35 Comportement et Ecologie de la Faune Sauvage, CS 52627, 31326 Castanet-Tolosan, France.

2. Centre d’Écologie Fonctionnelle et Évolutive UMR 5175, CNRS – Université de Montpellier – Université Paul Valéry Montpellier – EPHE, 1919 route de Mende, 34293 Montpellier CEDEX 5, France.

Abstract

Although individuals must generally trade off acquisition of high-quality resources against predation risk avoidance, removal of top predators by humans has resulted in many large herbivores experiencing novel conditions where their natural predators are absent. Antipredator behaviors should be attenuated or lost in such a context of relaxed predation pressure. To test this prediction, we analyzed daily and seasonal habitat selection and activity rhythm (both commonly linked to predation risk) of GPS-collared Sitka black-tailed deer (Odocoileus hemionus sitkensis Merriam, 1898) on predator-free islands (British Columbia, Canada). In marked contrast to the behavioral patterns commonly observed in populations subject to predation risk, we documented a very low day–night contrast in habitat selection. Moreover, we observed higher activity during daytime than nighttime, as expected for nonhunted populations. We also showed that resource selection was primarily driven by seasonal variations in resource availability. These results are consistent with the expected attenuation of antipredator behaviors in predation-free environments. However, we also observed marked crepuscular activity peaks, which are commonly interpreted as an antipredator response in ungulates. Our study indicates that large herbivores are able to adjust certain antipredator behaviors under relaxed selection, notably habitat selection and activity rhythm, while others persist despite the long-term absence of predators.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3