Abstract
The hypothesis that ambient ultraviolet radiation (UVR), at near-surface intensities, may diminish phosphorus availability to phytoplankton was tested in Lake Erie in July and August of 1998 and 1999. Relative to samples exposed to photosynthetically active radiation (PAR, 400700 nm) only, those exposed to ultraviolet-B (UVB, 280320) and (or) ultraviolet-A (UVA, 320400 nm) in natural sunlight, or kept in darkness, had diminished phosphate uptake rates at elevated (1 µM P) dissolved phosphate concentrations. By contrast, the specific uptake rate of dissolved phosphate at ambient concentrations (turnover rate) was not significantly affected by UVR or darkness. Turnover was usually dominated by particles smaller than 0.8 µm, whereas uptake from elevated concentrations was dominated by larger particles. The size distribution of turnover and uptake activity was not affected by radiation treatment. Chlorophyll a concentrations were decreased by sufficient exposure to UVB and (or) UVA and increased by deprivation of PAR (dark controls), but the concentration of bacterial cells was unaffected. The results showed that UVR inhibited the phosphate uptake potential of larger, probably algal, plankton but did not change the apparent severity of phosphate limitation at ambient concentrations.
Publisher
Canadian Science Publishing
Subject
Aquatic Science,Ecology, Evolution, Behavior and Systematics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献