One- and two-dimensional finite element modelling of thaw consolidation

Author:

Dayarathne Rajith Sudilan1,Hawlader Bipul C.2,Phillips Ryan3,Robert Dilan4

Affiliation:

1. Memorial University of Newfoundland, 7512, Civil Engineering, St. John's, Newfoundland and Labrador, Canada, ;

2. Memorial University of Newfoundland, 7512, Department of Civil Engineering, Faculty of Engineering and Applied Science, St. John's, Newfoundland and Labrador, Canada, A1B 3X5, , ;

3. C-Core, 468421, Captain Robert A. Bartlett Building, Morrissey Road, St. John's, Newfoundland and Labrador, Canada, A1B 3X5, , ;

4. RMIT University, 5376, Civil, Environmental and Chemical, GPO Box 2476, Melbourne, Victoria, Australia, 3001, ;

Abstract

Coupled thermo-hydro-mechanical finite element (FE) modelling of thaw consolidation is presented. One-dimensional FE analyses are performed for thaw consolidation of a soil column due to self-weight and with a combination of self-weight and surcharge, with the linear and nonlinear void ratio–effective stress–hydraulic conductivity relationships of thawed soil. The nonlinear behaviour of thawed soil is modelled using a modified Drucker–Prager Cap model, while the hydraulic conductivity is varied with the void ratio. Finally, two-dimensional FE modelling of thaw consolidation around a warm pipeline buried in permafrost is performed. The rapid reduction of the void ratio with consolidation, especially at the low-stress level, results in a wide variation of hydraulic conductivity within the thawed zone. The significantly large hydraulic conductivity of soil elements along the curved thaw front, as compared to that of thaw consolidated soil, causes the flow of water along the thaw front, instead of a vertical flow, as assumed in previous 1-D thaw consolidation modelling of buried pipelines.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3