Hydraulic Conductivity Testing and Destructive Sampling of Field-Scale Mine Waste Test Piles

Author:

Gorakhki Mohammad R. H.1,Bareither Christopher2,Scalia Joseph2

Affiliation:

1. Minerals Technologies Inc, 365374, Hoffman Estates, Illinois, United States;

2. Colorado State University, 3447, Civil & Environmental Engineering, Fort Collins, United States, 80523-1019;

Abstract

A commingled waste rock and tailings test pile and a waste rock test pile were evaluated to determine saturated hydraulic conductivity and destructively sampled to measure dry density. The commingled test pile contained a mixture of filtered tailings and waste rock blended to isolate waste rock particles as inclusions within the tailings matrix. Test piles were constructed in the shape of truncated 5-m tall pyramids with 25-m base sides and flat 5-m × 5-m top surfaces, and instrumented to monitor water content (and additional geochemical indicator parameters) within the test pile and seepage from the base of the pile. Piles were decommissioned after 26 months of operation. Saturated hydraulic conductivities were measured using sealed double ring infiltrometers (2.4-m square outer-ring and 1-m square inner-ring). Tensiometers and embedded water content sensors were used to measure progression of the wetting front, and the final location of the wetting front in the commingled test pile was directly measured during decommissioning. Field-measured saturated hydraulic conductivities were compared to laboratory-measured results intended to simulate the test piles. Despite having a lower average density, the commingled waste rock and tailings had a hydraulic conductivity approximately 2.5-times lower than the waste rock.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3