Effect of microwave treatment on the thermal properties and dynamic splitting behavior of red sandstone

Author:

Yang Chun1,Hassani Ferri2,Zhou Keping34,Xiong Xin4,Wang Famin5,Shao Yan4

Affiliation:

1. Central South University, 12570, Deparment of mining engineering, Changsha, China, 410083;

2. McGill University, 5620, Mining, Metals and Materials Engineering Department, Montreal, Quebec, Canada, ;

3. Central South University, 12570, Changsha, China

4. Central South University, 12570, Changsha, China;

5. State Key Laboratory of Shield Machine and Boring Technology, Zhengzhou, China;

Abstract

Microwave energy is a promising application in future rock breakage operations in the civil, mining, processing and space industries. Rock engineering projects frequently experience mechanical vibration and blasting impacts. Thus, understanding the dynamic fracturing behavior of microwave-treated rock is essential for its future application in microwave-assisted mechanical rock breakage. A customized industrial microwave system with a multimode resonant cavity was used to heat red sandstone at different microwave power levels (up to 4 kW) for a constant exposure time (4 min). The rock surface temperature distribution after microwave treatment was measured by an infrared camera. Dynamic splitting tests were conducted using a split Hopkinson pressure bar (SHPB) system in combination with a high-speed camera. Experimental results indicate that the rock dynamic splitting strength is negatively related to the microwave power, and the maximum reduction is 47.8%. Microwave treatment induced an obvious nonuniform temperature distribution and C-shaped surface cracks on disc specimens. During the dynamic splitting test, the crack induced by dynamic loading always initiates from the crack tip induced by microwave irradiation and then propagates along the loading diameter. The distribution of the inner high-temperature zone in the disc specimen is symmetric along the horizontal centerline of the disc specimen.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3