A critical saturated state-based constitutive model for volumetric behavior of compacted bentonite

Author:

Wang Yang1,Ye Wei-Min12ORCID,Wang Qiong1,Chen Yong-Gui1ORCID,Cui Yu-Jun3

Affiliation:

1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education,Tongji University,Shanghai200092, China

2. United Research Center for Urban Environment and Sustainable Development, Ministry of Education, Shanghai200092, China

3. Laboratoire Navier/CERMES, Ecole des Ponts ParisTech, 6 et 8 ave. Blaise Pascal, Marne La Vallée, Cedex 277455, France

Abstract

In recent years, more and more unique volumetric behaviors, including the nonlinear compression and unloading curves in the e-lnp plane, and different types of swelling and shrinkage curves obtained from suction-controlled swelling and shrinkage tests, etc., which are significantly different from those of nonexpansive clays, have been reported on compacted bentonite. More importantly, limitations were encountered when describing the unique behavior with existing constitutive models for unsaturated expansive soils. In this study, a new concept of critical saturation state (CSS) was proposed for compacted bentonite, in which, as the saturated state was reached, the matric suction still remained nonzero in the soil. Incorporated with this concept, a constitutive model was proposed. In this model, the CSS curve was defined in the suction-isotropic stress plane, delimiting the unsaturated zone. To validate the model, the volume change tests conducted on compacted GMZ bentonite under different stress paths were simulated. Good agreement confirmed that the proposed model could well describe the volume change behavior, including the swelling on hydration, shrinkage during drying, nonlinear compression, and unloading behavior.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3