Growth and allocation of Picea rubens, Picea mariana, and their hybrids under ambient and elevated CO2

Author:

Major John E.1,Mosseler Alex1,Johnsen Kurt H.2,Campbell Moira1,Malcolm John1

Affiliation:

1. Natural Resources Canada, Canadian Forest Service – Atlantic Forestry Centre, 1350 Regent St., Fredericton, NB E3B 5P7, Canada.

2. USDA Forest Service, Southern Research Station, 3041 Cornwallis Road, RTP, NC 27709, USA.

Abstract

Red spruce (RS; Picea rubens Sarg.) – black spruce (BS; Picea mariana (Mill.) B.S.P.) controlled crosses (100%, 75%, 50%, 25%, and 0% RS, balance BS) showed increasingly greater height with increasing proportion of BS in each successive year. Height growth of 4-year-old ambient CO2 (aCO2) grown trees was highly correlated with height of 22-year-old field-grown trees of the same or similar crosses. Bud flush was earliest in BS and declined linearly with increasing proportion of RS with no significant CO2 effect. Percent stem (stem + branches) mass increased under elevated CO2 (eCO2), a quarter of which was due to ontogeny. Conversely, percent needle mass had a significant negative relationship with increasing tree size, and there was a CO2 × tree size interaction. Shoot-to-root ratio was greatest for BS, whereas RS had among the lowest. Hybrid index (HI) 50 had the greatest root mass allocation, lowest shoot-to-root ratio, and among the greatest total mass under eCO2. Growth efficiency increased with tree size and eCO2 but decreased with HI. Percent total biomass stimulation under eCO2 was lowest for BS at 6.5%, greatest for HI 50 at 20.3%, and RS had 17.5%.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3