Wood-based bioenergy products — land or energy efficient?

Author:

Dwivedi Puneet1,Khanna Madhu2

Affiliation:

1. Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Room 4–114, 180 E Green St., Athens, GA 30602-2152, USA.

2. Energy Biosciences Institute, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA.

Abstract

Woody feedstocks will play an important role in meeting the total demand for biomass to generate electricity and produce ethanol in the United States. We analyzed 186 different scenarios (31 rotation ages (10 to 40 years in annual time steps); two types of forest management (intensive and nonintensive); and three feedstocks (logging residues only, pulpwood only, logging residues and pulpwood combined)) for ascertaining relative savings in greenhouse gas (GHG) emissions of two wood-based energy products (electricity and ethanol) on per unit land and per unit energy bases with respect to equivalent fossil fuel based energy products. Relative savings in GHG emissions were higher under intensive forest management compared with nonintensive forest management on a per unit land basis, whereas this situation reverses on a per unit energy basis. Combined use of pulpwood and logging residues saved the highest amount of GHG emissions on a per unit land basis, but on a per unit energy basis, relative GHG savings were similar to when only logging residues were used as a feedstock. Existing policies promoting bioenergy development in the United States only consider GHG savings on a per unit energy basis. A need exists to consider GHG savings on a per unit land basis as well to ensure efficient utilization of existing land resources to mitigate GHG emissions.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3