Deforestation mapping sampling designs for Canadian landscapes

Author:

Leckie Donald G.11,Paradine Dennis11,Kurz Werner A.11,Magnussen Steen11

Affiliation:

1. Canadian Forest Service, Pacific Forestry Centre, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada.

Abstract

Deforestation is the direct human-induced conversion of forest to nonforest land uses. It is important for nations to understand and report the extent of their deforestation. Because of the vastness of Canada’s forest and the rare and spatially diverse nature of its deforestation, a sampling approach in which deforestation is mapped and then scaled up to represent deforestation for different regions was needed. The effectiveness of different sample designs in capturing the area of deforestation was evaluated using a Monte Carlo approach in which alternate sample designs were applied to simulated forest landscapes representative of different regions and deforestation patterns in Canada. Sampling error as expressed by the standard error in the estimated deforestation level for the sample divided by actual deforestation of the simulated landscape was used as a measure of sample design performance. Results indicated that sampling error was dependent on the characteristics of the deforestation (e.g., amount, shape, size, and distribution). For example, as mean event size increases or the proportion of linear deforestation events (e.g., roads and corridors) decreases, the required sampling intensity to reach a certain level of sampling error increases, and landscapes with a small number of very large events required the largest sampling intensity. To achieve a relative sampling error target (standard error / sample mean) of 10%, given sample designs of square plots on a systematic grid, a sample of 15%–25% of a landscape will be required for most Canadian landscapes, given a 10-year mapping time frame (interval between samples) and assuming a deforestation rate of 0.025% per annum. With mapping over a 5-year period, the required sampling intensity rises to 20%–40%. Also discussed are the consequences of the sampling error of different designs on the uncertainty in estimated greenhouse gas emission resulting from deforestation.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3