Changes in bryophytes assemblages along a chronosequence in eastern boreal forest of Quebec

Author:

Boudreault C.12,Paquette M.1,Fenton N.J.1,Pothier D.2,Bergeron Y.1

Affiliation:

1. Centre d’Étude de la Forêt, NSERC UQAT-UQAM Industrial Chair in Sustainable Forest Management, Université du Québec en Abitibi-Témiscamingue, 445 Boul. de l’Université, Rouyn-Noranda, QC J9X 5E4, Canada.

2. Centre d’étude de la forêt, Faculté de foresterie, de géographie et de géomatique, Université Laval, 2405, rue de la terrasse, Québec, QC G1V 0A6, Canada.

Abstract

Old-growth forests are often considered as biodiversity hotspots for bryophytes because of their diversity in environmental niches or microhabitats and forest continuity. Following this hypothesis, old-growth forests would be expected to house species and functional traits associated with species dispersal different from mature forests. In this study, we compared bryophytes in old-growth and younger forests in terms of species composition, functional trait values, and microhabitat associations. We studied bryophytes in 22 sites distributed across three age classes (18 to >200 years) in boreal forests (eastern Quebec). Richness of liverworts, vegetative-reproducing species, and species with infrequent sexual reproduction were higher in the oldest age class. Species richness was best explained by the availability of coarse woody material (CWM) and other microhabitats, and community structure was best explained by balsam fir basal area. Microhabitats most often associated with indicator species were organic matter, CWM, and pits. Our results indicate that communities associated with older forests are potentially sensitive to forest management as they differ in composition and functional traits from other age classes, with many species characterized by reduced dispersal capabilities and tolerance to competition. An approach that combines critical source habitat protection for dispersal-limited species with protection of critical microhabitats in neighboring managed stands are necessary to allow successful recolonization and maintain bryophyte diversity in managed landscapes.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3