Mapping boreal peatland ecosystem types from multitemporal radar and optical satellite imagery

Author:

Bourgeau-Chavez L.L.1,Endres S.1,Powell R.1,Battaglia M.J.1,Benscoter B.2,Turetsky M.3,Kasischke E.S.4,Banda E.1

Affiliation:

1. Michigan Technological University, Michigan Tech Research Institute, 3600 Green Ct., Suite 100, Ann Arbor, MI 48105 USA.

2. Florida Atlantic University, Department of Biological Sciences, 3200 College Ave, Davie, FL 33314 USA.

3. University of Guelph, Department of Integrative Biology, Guelph, ON N1G 2W1 Canada.

4. University of Maryland, Department of Geographical Sciences, 2181 LeFrak Hall, College Park, MD 20742 USA.

Abstract

The ability to distinguish peatland types at the landscape scale has implications for inventory, conservation, estimation of carbon storage, fuel loading, and postfire carbon emissions, among others. This paper presents a multisensor, multiseason remote sensing approach to delineate boreal peatland types (wooded bog, open fen, shrubby fen, treed fen) using a combination of multiple dates of L-band (24 cm) synthetic aperture radar (SAR) from ALOS PALSAR, C-band (∼5.6 cm) from ERS-1 or ERS-2, and Landsat 5 TM optical remote sensing data. Imagery was first evaluated over a small test area of boreal Alberta, Canada, to determine the feasibility of using multisensor SAR and optical data to discriminate peatland types. Then object-based and (or) machine-learning classification algorithms were applied to 3.4 million ha of peatland-rich subregions of Alberta, Canada, and the 4.24 million ha region of Michigan’s Upper Peninsula where peatlands are less dominant. Accuracy assessments based on field-sampled sites show high overall map accuracies (93%–94% for Alberta and Michigan), which exceed those of previous mapping efforts.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Reference46 articles.

1. Benz, U., and Pottier, E. 2001. Object based analysis of polarimetric SAR data in alpha-entropy-anisotropy decomposition using fuzzy classification by eCognition. In IGARSS 2001: scanning the present and resolving the future. Proceedings of the Geoscience and Remote Sensing Symposium, Sydney, Australia, 9–13 July 2001. IEEE 2001 International. pp. 1427–1429. 10.1109/IGARSS.2001.976867.

2. Mapping invasive Phragmites australis in the coastal Great Lakes with ALOS PALSAR satellite imagery for decision support

3. Bourgeau-Chavez, L., Endres, S., Banda, E., Powell, R., Turetsky, M., Benscoter, B., and Kasischke, E. 2015a. NACP peatland landcover type and wildfire burn severity maps, Alberta, Canada. ORNL DAAC, Oak Ridge, Tenn. 10.3334/ORNLDAAC/1283.

4. Development of a Bi-National Great Lakes Coastal Wetland and Land Use Map Using Three-Season PALSAR and Landsat Imagery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3