The bivariate power-normal distribution and the bivariate Johnson system bounded distribution in forestry, including height curves

Author:

Mønness Erik1

Affiliation:

1. Hedmark University College, ØLR, P.O. Box 104, 2450 Rena, Norway.

Abstract

A bivariate diameter and height distribution yields a unified model of a forest stand. The bivariate Johnson system bounded distribution and the bivariate power-normal distribution are explored. The power-normal distribution originates from the well-known Box–Cox transformation. As evaluated by the bivariate Kolmogorov–Smirnov distance, the bivariate power-normal distribution seems to be superior to the bivariate Johnson system bounded distribution. The conditional median height given the diameter is a possible height curve and is compared with a simple hyperbolic height curve. Evaluated by the height deviance, the hyperbolic function yields the best height prediction. A close second is the curve generated by a bivariate power-normal distribution. Johnson system bounded distributions suffer from the sigmoid shape of the association between height and diameter. The bivariate power-normal distribution is easy to estimate and has good numerical properties; therefore, it is a good candidate model for use in forest stands.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3