Interactions among defoliation level, species, and soil richness determine foliage production during and after simulated spruce budworm attack

Author:

Wu Yuanyuan1,MacLean David A.1,Hennigar Chris12,Taylor Anthony R.13

Affiliation:

1. Faculty of Forestry and Environmental Management, University of New Brunswick, P.O. Box 4400, Fredericton, NB E3B 5A3, Canada.

2. Department of Natural Resources and Energy Development, P.O. Box 6000, Fredericton, NB E3B 5H1, Canada.

3. Atlantic Forestry Centre, Canadian Forest Service, Natural Resources Canada, P.O. Box 4000, Fredericton, NB E3B 5P7, Canada.

Abstract

Defoliation level and site type are thought to influence tree response during spruce budworm (Choristoneura fumiferana (Clemens)) outbreaks. We determined the effects of four manual defoliation treatments (0%, 50%, 100%, and 100% + bud removal of current foliage) for 3 years on foliage production of balsam fir (Abies balsamea (L.) Mill.), black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.), and white spruce (Picea glauca (Moench) Voss) trees on four site-quality classes. After 3 years of defoliation and 2 years of recovery, foliage biomass was reduced by 34%–98%. During defoliation, the number of shoots generally increased and shoot length of spruce generally decreased, especially on rich sites. During recovery, the number of shoots increased substantially, shoot length decreased, and bud destruction reduced the number of shoots by about 50% compared with that of trees that received the 100% defoliation treatment. Defoliation did not substantially affect needle length. Trees on rich sites had two- to fourfold greater foliage production than trees on poor sites. Effects of site and defoliation differed among species, but site quality, especially nutrition, played an important role in production of shoots and needles and the tree’s ability to withstand defoliation. Black spruce had more limited ability to recover foliage biomass, only producing more shoots, whereas balsam fir and white spruce had stronger ability to recover needle and shoot length, respectively.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3