Growth and wood properties of genetically improved loblolly pine: propagation type comparison and genetic parameters

Author:

Antony Finto1,Schimleck Laurence R.2,Jordan Lewis3,Hornsby Benjamin4,Dahlen Joseph1,Daniels Richard F.1,Clark Alexander4,Apiolaza Luis A.5,Huber Dudley6

Affiliation:

1. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA.

2. Department of Wood Science and Engineering, Oregon State University, Corvallis, OR 97331, USA.

3. Southern Timberlands R&D, Weyerhaeuser Co., Columbus, MS 39704, USA.

4. USDA Forest Service, Southern Research Station, Athens, GA 30602, USA.

5. School of Forestry, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.

6. University of Florida, Gainesville, FL 32605, USA.

Abstract

The use of clonal varieties in forestry offers great potential to improve growth traits (quantity) and wood properties (quality) of loblolly pine (Pinus taeda L.). Loblolly pine trees established via somatic embryogenesis (clones), full-sib zygotic crosses, and half-sib zygotic open-pollinated families were sampled to identify variation in growth and wood properties among and within clonal lines and zygotic controls. Increment cores 5 mm in diameter were collected at age 4 from a total of 2615 trees. Growth properties (diameter at 1.4 m and total tree height) and wood properties (whole-core density, latewood and earlywood density, and latewood percent) were measured for each tree sampled in the study. Overall, growth properties were better for full-sib seedling than for clonal lines, whereas wood density was higher for clonal lines than full-sib and open-pollinated seedlings. However, there were clonal lines with better growth and higher wood density. Clonal repeatability of both growth and wood properties across sampled sites and genetic correlations between growth and wood traits were determined, with higher repeatability observed for wood traits compared with growth traits. Significant genetic correlations were observed for tree height and wood properties, whereas weak correlations were observed for diameter and wood properties.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3