Interspecific competition limits the realized niche ofFraxinus nigraalong a waterlogging gradient

Author:

Looney Christopher E.1,D’Amato Anthony W.2,Fraver Shawn3,Palik Brian J.4,Frelich Lee E.1

Affiliation:

1. Department of Forest Resources, University of Minnesota, St. Paul, MN 55108, USA.

2. Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT 05095, USA.

3. School of Forest Resources, University of Maine, Orono, ME 04469, USA.

4. USDA Forest Service, Northern Research Station, Grand Rapids, MN 55744, USA.

Abstract

Gradient studies of wetland forests have inferred that competition from upland tree species confines waterlogging-tolerant tree species to hydric environments. Little is known, however, about competition effects on individual-tree growth along stress gradients in wetland forests. We investigated tree growth and competition in mixed-species stands representing a waterlogging stress gradient in Fraxinus nigra Marsh. (black ash) forests in Minnesota, USA. Using competition indices, we examined how F. nigra basal area increment (BAI) responded to competition along the gradient and whether competition was size-asymmetric (as for light) or size-symmetric (as for soil resources). We modeled spatial distributions of F. nigra and associated tree species to assess how variation in species mixtures influenced competition. We found that although F. nigra BAI did not significantly differ with variations in site moisture, the importance of competition decreased as waterlogging stress increased. Competition across the gradient was primarily size-asymmetric (for light). Variation in species mixtures along the gradient was an important influence on competition. Some segregation of tree species occurred at all but the most upland site, where waterlogging stress was lowest and evidence of competition was greatest, confirming that competition from upland tree species confines F. nigra and potentially other waterlogging-tolerant species to hydric environments.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3