Crown allometry and application of the pipe model theory to white spruce (Picea glauca (Moench) Voss) and aspen (Populus tremuloides Michx.) in the western boreal forest of Canada

Author:

Sattler Derek F.1,Comeau Philip G.2

Affiliation:

1. Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, AB T6G 2H1, Canada.

2. Department of Forest Resources Management, University of Alberta, 751 General Services Building, Edmonton, AB T6G 2H14, Canada.

Abstract

White spruce (Picea glauca (Moench) Voss) and aspen (Populus tremuloides Michx.) from unmanaged stands in the boreal forest of Alberta, Canada, were examined for two of the main structural assumptions in the process-based model CROBAS: (i) a constant allometric relationship between foliage mass and crown length and (ii) a constant relationship between foliage mass and sapwood area. We evaluated these relationships at both at the whole-crown and within-crown levels. Results indicated that for both species, a constant allometric relationship between foliage mass and crown length was maintained at the whole-crown level over a period exceeding the peak mean annual increment of each species. Within the crowns of spruce, foliage mass accumulated faster near the tree apex as total crown length increased. For aspen, the increase in foliage mass per unit crown length for any section within the crown showed greater similarity to the relationship observed at the whole-crown level. The assumption of a constant relationship between foliage mass and sapwood area at the crown base generally held for spruce but showed considerable variation for any given diameter class. For aspen, this assumption did not appear to be appropriate. For both species, there was more foliage mass per unit sapwood area with increasing height from the ground for nearly all tree size classes. This latter finding was in conflict with the pipe model theory but could not be explained by the hydraulic theory of crown architecture, which predicts a decrease in the ratio of foliage mass to sapwood area with increasing path length.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3