Early seral pathways of vegetation change following repeated short-interval, high-severity wildfire in a low-elevation, mixed conifer – hardwood forest landscape of the Klamath Mountains, California

Author:

McCord Millen1,Reilly Matthew J.1,Butz Ramona J.23,Jules Erik S.1

Affiliation:

1. Department of Biological Sciences, Humboldt State University, Arcata, CA 95521, USA.

2. USDA Forest Service, Pacific Southwest Region, 1330 Bayshore Way, Eureka, CA 95501, USA.

3. Department of Forestry and Wildland Resources, Humboldt State University, Arcata, CA 95521, USA.

Abstract

We compared early seral development between stands subject to single and repeated high-severity wildfire in low-elevation, mixed conifer – hardwood forests in the Klamath Mountains, California, USA. We used a before–after, control–impact (BACI) approach to assess changes in the density of conifer regeneration and the cover of multiple components of vegetation structure (conifers, hardwoods, shrubs, forbs, and graminoids) and compare pathways of seral development between plots that burned once and plots that burned twice. Fifty-three field plots were established 6 years following a high-severity fire in 2004. Nineteen of these plots experienced a second high-severity wildfire 11 years later (2015), and all plots were remeasured in 2016–2017. Conifer regeneration was abundant following the first fire but was greatly reduced by the second fire. Plots that did not reburn increased in conifer, hardwood, and shrub cover, whereas plots that reburned increased in forb cover and decreased in shrub, hardwood, and conifer cover. Despite conifer loss, we found little evidence of shifts to nonforested states following repeated fire due to resilience of resprouting hardwoods. Our results indicate that repeated high-severity fire has the potential to protract early seral development and catalyze transitions from mixed conifer – hardwood forest to hardwood-dominated early seral conditions.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3