Defining the window of opportunity for feeding initiation by second-instar spruce budworm larvae

Author:

Fuentealba Alvaro12,Sagne Solène1,Pureswaran Deepa3,Bauce Éric2,Despland Emma1

Affiliation:

1. Department of Biology, Concordia University, 7141 Sherbrooke W., Montreal, QC H4B 1R6, Canada.

2. Centre d’étude de la forêt (CEF) and Département des sciences du bois et de la forêt Faculté de foresterie, de géographie et de géomatique, Université Laval, QC G1V 0A6, Canada.

3. Natural Resources Canada, Canadian Forest Service. 1055 du P.E.P.S., Sainte-Foy, QC G1V 4C7, Canada.

Abstract

Establishing feeding sites is critical for the survival of neonate Lepidoptera larvae. Rapid foliar quality changes during leaf expansion create a narrow window of opportunity for establishment of early-spring feeders. We examined the effect of phenological synchrony between black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.) and balsam fir (Abies balsamea (L.) Mill.) budbreak and spruce budworm (Choristoneura fumiferana (Clemens)) emergence on the feeding behaviour of young larvae and on overall larval growth and survival under laboratory conditions. We correlated these variables with bud development and foliar toughness during the growing season. Our results show that early-emerging second-instar larvae were unable to feed on either black spruce or balsam fir buds; budworm on balsam fir mined old foliage and exhibited good survival and performance, but those on black spruce remained on the foliar surface and suffered high mortality and low growth. In the second later-emerging cohort, bud feeding gradually increased on black spruce whereas it was already the predominant behaviour on balsam fir, and no differences in performance were observed between host species. Thus, black spruce budbreak constitutes a strict window of opportunity, since larvae are often unable to mine the old foliage. Our results suggest that mechanical toughness could be the obstacle preventing young larvae from mining old black spruce needles. Our findings confirm the importance of second-instar ecology in spruce budworm, suggesting that, if climate warming eventually results in an improvement in phenological synchrony between spruce budworm and black spruce, larval survival may increase.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3