Effects of artificial warming during quiescence on budbreak and growth of white spruce, Picea glauca

Author:

Pike Carolyn C.1,Warren James C.1,Montgomery Rebecca A.2

Affiliation:

1. Department of Forest Resources, University of Minnesota, Cloquet Forestry Center, 175 University Rd., Cloquet, MN 55720, USA.

2. Department of Forest Resources, University of Minnesota, 1530 North Cleveland Ave, St. Paul, MN 55108, USA.

Abstract

Climate change is expected to increase winter temperatures in boreal climates. White spruce (Picea glauca (Moench) Voss) is vulnerable to spring frost damage due to its habit of early budbreak, which may be exacerbated or lessened with increasingly warm winters at its southern range edge. We tested the effects of episodic warming during the quiescent stage on budbreak time and growth of seven seed sources grown in a common garden setting in Minnesota, USA. Treatment plots were warmed with infrared lamps for 4 days each in February, March, or February and March to simulate a midwinter thaw. Control plots for each treatment and an overall control were included for comparison. Trees warmed in February experienced a slight delay in spring budbreak, but differences in budbreak time were generally not significant. Terminal growth was significantly and negatively correlated with time of budbreak but not with time to growth cessation. Our results suggest that white spruce is relatively resilient to the effects of intermittent warming but that warming early in the season may delay budbreak time, which is expected to reduce terminal growth.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3