Modeled diameter growth response to intermediate treatments of planted white spruce (Picea glauca) affected by eastern spruce budworm (Choristoneura fumiferana) in Minnesota, U.S.A.

Author:

Patton Stephanie R.11,Russell Matthew B.11,Windmuller-Campione Marcella A.11,Edgar Christopher B.11

Affiliation:

1. University of Minnesota, Department of Forest Resources, 1530 Cleveland Avenue N, St. Paul, MN 55108, U.S.A.

Abstract

White spruce (Picea glauca (Moench) Voss) plantations have historically been an important source of high-quality forest products in the Great Lakes Region of North America. Thinning in spruce plantations is a common silvicultural practice for reducing competition and promoting resiliency to forest health threats such as eastern spruce budworm (Choristoneura fumiferana Clemens), a native forest pest of eastern North America. Spruce budworm larvae feed on the foliage of trees, which reduces growth and potentially causes mortality during an outbreak. There has been continual spruce budworm defoliation in northern Minnesota, U.S.A., since the mid-1950s, with higher levels of defoliation in the late 1990s. This research modeled the diameter growth response of white spruce 18 years after initial thinning in stands that presently range between 44 and 64 years old. Some stands received a second thinning in recent years. We used generalized nonlinear least squares and nonlinear mixed-effects models to estimate annual diameter growth using common tree and stand metrics. Growth model performance was improved by including thinning and frequency of spruce budworm defoliation as modifiers of diameter growth. Results of this study highlight how thinning in combination with insect disturbance affect diameter growth in white spruce plantations of northern Minnesota.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3