Genetic analysis of fiber-dimension traits and combined selection for simultaneous improvement of growth and stiffness in lodgepole pine (Pinus contorta)

Author:

Hayatgheibi Haleh1,Fries Anders1,Kroon Johan2,Wu Harry X.13

Affiliation:

1. Umeå Plant Science Centre, Department Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden.

2. Skogforsk, Ekebo 2250 SE-268 90 Svalöv, Sweden.

3. CSIRO NRCA, Black Mountain Laboratory, Canberra, ACT 2601, Australia.

Abstract

Quantitative genetic variation of fiber-dimension traits and their relationship with diameter at breast height (DBH) and solid-wood traits (i.e., density and modulus of elasticity (MOE)) was investigated in lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.). A total of 823 increment cores were sampled from 207 half-sib families at two independent progeny trials, aged 34–35 years, located in northern Sweden. High-resolution pith-to-bark profiles were obtained for radial fiber width (RFW), tangential fiber width (TFW), fiber wall thickness (FWT), and fiber coarseness (FC) using SilviScan. Heritabilities ranged from 0.29 to 0.74, and inheritance increased with cambial maturity. Estimated age–age genetic correlations indicate that early selection between ages 5 and 8 years is highly efficient. Our results indicate that selection for a 1% increase in DBH or MOE incurs a negligible effect on fiber-dimension traits and maximum genetic gains are reached when DBH and MOE are considered jointly. Moreover, simultaneous improvement of growth and stiffness is achievable when a selection index with 7 to 10 economical weights for MOE relative to 1 for DBH is incorporated. However, the unfavorable relationship between solid-wood traits and pulp and paper related traits suggests that breeding strategies must be implemented to improve wood quality of lodgepole pine for multiple uses.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3