Vertical distribution of three longhorned beetle species (Coleoptera: Cerambycidae) in burned trees of the boreal forest

Author:

Cadorette-Breton Yannick1,Hébert Christian2,Ibarzabal Jacques3,Berthiaume Richard1,Bauce Éric1

Affiliation:

1. Faculté de foresterie, de géographie et de géomatique, Pavillon Abitibi-Price, 2405 rue de la Terrasse, Université Laval, Québec, QC G1V 0A6, Canada.

2. Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Succ. Sainte-Foy, Québec, QC G1V 4C7, Canada.

3. Université du Québec à Chicoutimi, 555 boulevard de l’Université, Chicoutimi, QC G7H 2B1, Canada.

Abstract

This study aimed to characterize the vertical distribution of longhorned beetle larvae in burned trees of the eastern Canadian boreal forest. Black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.) and jack pine (Pinus banksiana Lamb.) trees burned at three severity levels were cut, and 30 cm boles were collected from the ground up to a height of 9.45 m. Boles were debarked and dissected to collect insect larvae. Results show that the three most abundant longhorned beetle species were vertically segregated among burned jack pine and black spruce trees, but the section having the highest timber value was heavily infested by woodborer larvae. Larval density distribution of Monochamus scutellatus scutellatus (Say) and of Acmaeops proteus proteus (Kirby) could be linked with bark thickness, which also depends on fire severity. Lightly burned stands of black spruce were the most heavily infested and should be salvaged only if they are easily accessible and can thus be rapidly harvested and processed at the mill. More severely burned stands should be salvaged later as they will be less affected by woodborers, as should jack pine, which is lightly infested compared with black spruce. The ecological role of stumps should be further investigated because they could still have an ecological value after salvage logging as Arhopalus foveicollis (Haldeman) uses them specifically.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3