Differential impacts of calcium and aluminum treatments on sugar maple and American beech growth dynamics

Author:

Halman Joshua M.1,Schaberg Paul G.2,Hawley Gary J.3,Hansen Christopher F.1,Fahey Timothy J.4

Affiliation:

1. University of Vermont, Rubenstein School of Environment and Natural Resources, 705 Spear St., South Burlington, VT 05403, USA.

2. USDA Forest Service, Northern Research Station, 81 Carrigan Dr., Burlington, VT 05405, USA.

3. University of Vermont, Rubenstein School of Environment and Natural Resources, 81 Carrigan Dr., Burlington, VT 05405, USA.

4. Cornell University, Department of Natural Resources, Ithaca, NY 14853, USA.

Abstract

Acid deposition induced losses of calcium (Ca) from northeastern forests have had negative effects on forest health for decades, including the mobilization of potentially phytotoxic aluminum (Al) from soils. To evaluate the impact of changes in Ca and Al availability on sugar maple (Acer saccharum Marsh.) and American beech (Fagus grandifolia Ehrh.) growth and forest composition following a major ice storm in 1998, we measured xylem annual increment, foliar cation concentrations, American beech root sprouting, and tree mortality at the Hubbard Brook Experimental Forest (Thornton, New Hampshire) in control plots and in plots amended with Ca or Al (treated plots) beginning in 1995. Dominant sugar maple trees were unaffected by the treatment, but nondominant sugar maple tree growth responded positively to Ca treatment. Although plots were mainly composed of sugar maple, American beech experienced the greatest growth on Al-treated plots. Increases in tree mortality on Al-treated plots may have released surviving American beech and increased their growth. The Al tolerance of American beech and the Ca:Al sensitivity of sugar maple contributed to divergent growth patterns that influenced stand productivity and composition. Given that acidic inputs are expected to continue, the growth dynamics associated with Al treatment may have direct relevance to future conditions in native forests.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3