Stand age versus tree diameter as a driver of forest carbon inventory simulations in the northeastern U.S.

Author:

Ma Wu1,Woodall Christopher W.2,Domke Grant M.3,D’Amato Anthony W.1,Walters Brian F.3

Affiliation:

1. Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT 05405, USA.

2. U.S. Department of Agriculture, Forest Service, Northern Research Station, Durham, NH 03824-0640, USA.

3. U.S. Department of Agriculture, Forest Service, Northern Research Station, St. Paul, MN 55108, USA.

Abstract

Estimating the current status and future trends of carbon (C) stocks and stock changes in forests of the northeastern United States is desired by policy makers and managers as these forests can mitigate climate change through sequestration of atmospheric carbon dioxide (CO2). We developed C flux matrix models using tree and stand variables by tree diameter class and stand age class to compare size-structured models with age-structured models in their capacity to predict forest C dynamics that are central to policy decisions. The primary control variables for the C flux matrix models (diameter at breast height, stand basal area, stem density, and stand age) were all statistically significant at the α ≤ 0.05 level. Through comparing the simulation results and root mean square error of C flux matrix models by tree diameter class and stand age class, we found that tree diameter class more accurately predicted C stock change status across the broad compositional and structural conditions in the spatial and temporal domain. An uncertainty analysis revealed that predictions of aboveground C and soil C would be distinctively different whether using tree diameter class or stand age class with high certainty. Overall, this work may enable better integration of forest inventory data and remotely sensed data for the purpose of strategic-scale forest C dynamic simulations.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3