Affiliation:
1. Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA.
2. Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, MO 63110, USA.
3. Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
Abstract
Deadwood plays important roles in forest ecosystems by storing carbon, influencing hydrology, and provisioning countless organisms. Models for these processes often assume that deadwood does not move and ignore redistribution that occurs when trees fall. To evaluate the effects of treefall, we provide the first direct estimates for the magnitude, direction, and drivers of deadwood movement in a long-term oak–hickory forest dynamics plot in Missouri, USA. Among 1871 total pieces of deadwood, logs today pointed downslope more often than branches and occurred at lower elevation than snags. Of these, 477 logs retained tags from which we reconstructed movement using new formulae for reconciling survey coordinates and calculating log shape. Relocated logs occurred at lower elevation than their original rooting location, with the magnitude of the drop dependent on log size, degree of decay, and slope. Although changes in elevation were modest, the log centroids moved up to several meters horizontally. Consequently, as large trees fall, they predictably redistribute deadwood downhill, suggesting that models of deadwood dynamics in small inventory plots may gain accuracy by incorporating import and export along with recruitment and decay. We highlight implications of small-scale deadwood movement for forest inventories, carbon dynamics, and biodiversity.
Publisher
Canadian Science Publishing
Subject
Ecology,Forestry,Global and Planetary Change
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献