Climate, location, and growth relationships with wood stiffness at the site, tree, and ring levels in white spruce (Picea glauca) in the Boreal Plains ecozone

Author:

Sattler Derek F.1,Stewart James D.2

Affiliation:

1. Forest Analysis and Inventory Branch, B.C. Ministry of Forests, Lands and Natural Resource Operations, P.O. Box 9512 Stn. Prov. Govt., Victoria, BC V8W 9C2, Canada.

2. Canadian Wood Fibre Centre, Canadian Forest Service, Natural Resources Canada, Northern Forestry Centre, 5320–122 Street, Edmonton, AB T6H 3S5, Canada.

Abstract

We examined modulus of elasticity (MoE) derived from SilviScan in white spruce (Picea glauca (Moench) Voss) at the site, tree, and ring levels across the Boreal Plains ecozone in Canada. Area-weighted averages of MoE were calculated for juvenile and mature wood and were examined in relation to radial growth, climate, and location. Correlations indicated that there was a negative relationship between radial growth and MoE in the juvenile wood that was detectable at the site and tree levels; however, the relationship weakened in the mature wood, particularly at the site level. Few climate variables were correlated with MoE in juvenile wood, whereas multiple summer and fall climate variables showed a significant correlation with MOE in mature wood. A model describing the radial profile of MoE explained 58% of the variability in MoE, with 10% of the random variability attributed to between-tree differences. Elevation and summer water balance accounted for nearly all of the between-site variability. A decrease in MoE with increasing elevation was noted and has been previously linked to a decrease in cell wall thickness due to a shorter growing season at higher elevations. Integration of the MoE profile model into an individual-tree growth and yield simulator is the next logical step.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3