Affiliation:
1. School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195, USA.
Abstract
Douglas-fir forests of the coastal Pacific Northwest experience yearly summer droughts; however, the variation in shallow soil available water supply throughout the region is not well understood nor is the effect of future climate change. Soil moisture sensors were installed in 60 Douglas-fir plantation forests over 6 years. Stands were grouped by physiographic regions to describe differences in climate and available water supply. Monthly available water supply (MAWS) (0–50 cm) was calculated as the average daily available moisture content. MAWS was modeled using monthly climate variables, and the equation was then used to predict the change in MAWS due to mild, moderate, and severe climate change predictions. Regional monthly air temperature and precipitation were strongly predictive of MAWS. Mild to severe climate change are predicted to decrease yearly available water supply by 8% to 19%, while summer available water supply will decrease from 25% to 72%. The greatest decreases due to climate change will be found in the coastal regions of Washington and Oregon due to greater negative effects of temperature on available water supply. Climate change, especially the most severe predictions, was shown to have a sizeable effect on shallow soil available water supply in coastal Douglas-fir forests.
Publisher
Canadian Science Publishing
Subject
Ecology,Forestry,Global and Planetary Change
Reference26 articles.
1. Effects of thinning and nitrogen fertilization on xylem development in Douglas-fir
2. Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests
3. Origin matters! Difference in drought tolerance and productivity of coastal Douglas-fir (Pseudotsuga menziesii (Mirb.)) provenances
4. MYCORRHIZAE AND NUTRIENT CYCLING IN NATURAL FOREST ECOSYSTEMS
5. Intergovernmental Panel on Climate Change (IPCC). 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Edited byT.F. Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley. Cambridge University Press, Cambridge, UK, and New York, USA.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献