Does increment coring enhance tree decay? New insights from tomography assessments

Author:

Wunder Jan123,Manusch Corina2,Queloz Valentin4,Brang Peter5,Ringwald Veronique2,Bugmann Harald2

Affiliation:

1. Insubric Ecosystems Research Group, WSL Swiss Federal Institute for Forest, Snow and Landscape Research, CH-6500 Bellinzona, Switzerland.

2. Forest Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zurich, CH-8092 Zurich, Switzerland.

3. School of Environment, The University of Auckland, Auckland 1020, New Zealand.

4. Forest Pathology, Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, CH-8092 Zurich, Switzerland.

5. Forest Resources and Management, WSL Swiss Federal Institute for Forest, Snow and Landscape Research, CH-8903 Birmensdorf, Switzerland.

Abstract

Increment coring is a standard method to obtain growth history information stored in trees. Although the method is invasive, the long-term effects on tree decay are largely unknown. Here we assess a possible side-effect of scientific research, i.e., coring-induced stemwood decay, using the high-resolution imaging technique of sonic and electric resistivity tomography. To this end, we use data from a Norway spruce (Picea abies (L.) Karst.) forest in the Swiss Alps (forest reserve Scatlè) containing a large number of trees cored in 1965–1966. In 2011, in-situ tomography was applied to 22 pairs of cored and uncored trees to assess their stemwood decay status. Each pair was characterised by similar tree diameter at breast height, vitality, forest layer class, micro-site, and competition status. Samples from a subset of 10 trees were checked for common heart rot fungi. We found no significant difference between the decay status of cored and uncored trees. Few trees of both groups showed distinct signs of decay, most of them growing in a cluster containing three cored and seven uncored trees. Heterobasidion annosum s.l. was identified in seven trees, and Armillaria sp. was identified in one tree only. Heterobasidion annosum was found in two trees without distinct decay signs, showing the latent presence of this pathogen in unmanaged forests. Our findings suggest that increment coring of P. abies does not cause a significant increase of tree decay frequency in undisturbed high-elevation forest stands.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3