Leaf-level physiology in four subalpine plants in tephra-impacted forests during drought

Author:

Watt Abby J.1,Fischer Dylan G.1,Antos Joseph A.2,Zobel Donald B.3

Affiliation:

1. Evergreen Ecosystem Ecology Laboratory, The Evergreen State College, Olympia, WA 98505, USA.

2. Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada.

3. Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.

Abstract

Ecological impacts of climate change in the Pacific Northwest may hinge on acclimation to drier summers, highlighting the importance of plant physiological studies in forests. Evaluating dominant forest plant species under old-growth and managed forest conditions is similarly important as timber harvest might change microclimates and alter drought effects on plants. We examined water potential and gas exchange rates of four dominant plant species in understories of subalpine forests of the Pacific Northwest region of the United States during 2015 — a year with drought conditions representative of future climate projections. We examined two conifer species (Abies amabilis Douglas ex J. Forbes and Tsuga heterophylla (Raf.) Sarg.) and two huckleberry species (Vaccinium membranaceum Douglas ex Torr. and Vaccinium ovalifolium Sm.) in old-growth and formerly clear-cut forests at two elevations. Contrary to expectations, we found no evidence of hydraulic stress, and there were no significant differences between old-growth and clear-cut stands, consistent with an edaphic buffering effect in this volcanic landscape. Variation in stem elongation rates among years also indicated the lack of a strong drought response in 2015. Water potential, photosynthesis, and stomatal conductance varied among species and among elevations. In combination, our results help constrain expected physiological activity of understory species in subalpine forests and emphasize the importance of the edaphic context (e.g., tephra deposits) in framing expectations for the responses to drought.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3