Carbon storage, net primary production, and net ecosystem production in four major temperate forest types in northeastern China

Author:

Cai Huiying12,Di Xueying3,Chang Scott X.2,Wang Chuankuan1,Shi Baoku1,Geng Pengfei1,Jin Guangze1

Affiliation:

1. Center for Ecological Research, Northeast Forestry University, Harbin 150040, China.

2. Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2E3, Canada.

3. School of Forestry, Northeast Forestry University, Harbin 150040, China.

Abstract

Temperate forests in northeastern China play a key role in the national carbon (C) budget; however, this role has been poorly quantified. The objective of this study was to quantify C storage, net primary production (NPP), and net ecosystem production (NEP) in four major temperate forest types in northeastern China. The four forest types include a primary mixed broadleaf – Korean pine (Pinus koraiensis Siebold & Zucc.) old-growth forest and three mid-aged regenerating forests, i.e., a secondary birch (Betula platyphylla Sukaczev) forest, a Korean pine plantation, and a Dahurian larch (Larix gmelinii (Rupr.) Rupr.) plantation. Total C storage differed significantly among the four forest types, with the highest storage (315.4 t C·ha−1) in the old-growth forest. Soil organic C accounted for 55%–70% of the ecosystem C, whereas vegetation C accounted for 28%–43% of the ecosystem C. Soil organic C storage in the two plantations was significantly lower than that in old-growth and secondary birch forests. The allocation (aboveground and belowground) of NPP, but not the total NPP, differed significantly among the forest types. Litterfall (44%–60%) and fine root production (43%–47%) contributed the largest proportion of the aboveground and belowground NPP, respectively. The highest NEP was in the Korean pine plantation (328.0 g C·m−2·year−1), followed by the old-growth (311.9 g C·m−2·year−1) and secondary birch (231.1 g C·m−2·year−1) forests, with the lowest NEP in the Dahurian larch plantation (187.9 g C·m−2·year−1). These results suggest that the major forest types are currently C sinks and Korean pine plantation establishment can be a promising approach for increasing C sequestration in northeastern China.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3