Multisite genetic parameter estimates from a Callitropsis nootkatensis diallel study with clonally replicated progeny

Author:

Russell John H.1,Costa e Silva João2,Baltunis Brian S.3

Affiliation:

1. British Columbia Ministry of Forests, Lands and Natural Resource Operations, Cowichan Lake Research Station, 7060 Forestry Road, Mesachie Lake, BC V0R 2N0, Canada.

2. Centro de Estudos Florestais, Departamento dos Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada de Ajuda, 1349-017 Lisboa, Portugal.

3. Weyerhaeuser, 32901 Weyerhaeuser Way S, Federal Way, WA 98001, USA.

Abstract

Clonally replicated Callitropsis nootkatensis (D. Don) D.P. Little progeny from partial diallels were established in nine trials on coastal British Columbia, Canada. The trials were assessed for height, diameter, and crown form at age 12 years. An individual-genotype, linear mixed model with spatially correlated residuals was used to estimate the variance components and related genetic parameters. The majority of the estimated genetic variance for all traits was additive, and nonadditive genetic variance was predominantly due to dominance effects. Narrow-sense heritabilities for height and diameter at individual sites varied from 0.07 to 0.39, whereas for crown form, they were all less than 0.1. Dominance and epistasis ratios were, for the most part, lower than narrow-sense heritabilities. Common across-site additive and nonadditive genetic correlations were strongly positive and not significantly different from 1.0 for the majority of traits across sites within a series. Significant levels of additive genetic variance, coupled with insignificant to low nonadditive genetic variance for growth and crown form, would seem to be contrary to developing a clonal testing and deployment program. However, the lack of viable orchard seed and the faster delivery of genetic gain to reforestation, as well as more accurate forward selections based on additive genetic effects, makes this strategy viable for C. nootkatensis.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3