Affiliation:
1. Biological Station, University of Michigan, Pellston, MI 49769, U.S.A.
2. Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, U.S.A.
3. Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, U.S.A.
Abstract
What are the successional trajectories and impacts of disturbances on forest soil nutrient availability? Answers remain elusive because the time scale of interest is long and many factors affect soil properties. We address this question on a regionally representative landscape in northern Michigan, U.S.A. Late-successional reference stands aside, most forests on this landscape were clearcut and burned between 1870 and 1911; subsequently, stands comprising two chronosequences were either cut and burned again, or cut only, at multidecadal intervals. Influences of disturbance and succession were detectable in A, B, and C horizons, particularly for properties affected by ash deposition: pH, Ca, and Mg declined with age but were higher in twice-burned stands. A horizon NH4+ was lower in twice-burned than once-burned stands and declined with age in both chronosequences. B horizon Fe increased with age in both chronosequences but remained lower in twice-burned stands, suggesting slower recovery of pedogenesis following more severe disturbance. Contrasted against A and B horizons, where soil properties were driven by disturbance and succession, textural influences were evident in C horizons through variation in Ca, Mg, K, Al, and cation exchange capacity. Collectively, these results indicate deep, long-lasting disturbance impacts and a bottom-up influence of parent material at the landscape level.
Publisher
Canadian Science Publishing
Subject
Ecology,Forestry,Global and Planetary Change
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献