Quantifying downed coarse woody material and residual forest basal area following retention harvesting in northeastern Minnesota using Landsat sensor data

Author:

Wolter P.T.1,Hilgemann L.A.2,White M.A.3

Affiliation:

1. Department of Natural Resource Ecology and Management, Iowa State University, 339 Science Hall II, 2310 Pammel Drive, Ames, IA 50011, USA.

2. Virgin Islands Department of Agriculture, R.R. 1, Box 10345, Kingshill, VI 00850, USA.

3. The Nature Conservancy, Minnesota, North and South Dakota, 394 Lake Avenue South, Duluth, MN 55802, USA.

Abstract

Retention harvesting shows great promise for restoring and maintaining forest structural and compositional diversity. However, economical, comprehensive monitoring is needed to advance understanding of the effectiveness of these management strategies through time. We investigate multitemporal winter Landsat sensor data (capturing snow ground cover at 7.6 cm and 106.7 cm depths) as a tool for discriminating between and providing regional estimates of both residual forest basal area (BA) and downed coarse woody material (DCWM) volume following retention harvesting in Minnesota, USA. Measurements from 34 ground plots were used with Landsat predictor variables to estimate these two biophysical forest parameters. According to similar studies, results for DCWM volume estimation are considered adequate, with an R2adj = 0.54 and absolute RMSE (RMSEa) = 19.02 m3·ha−1. Residual forest BA estimates were similar: total BA R2adj = 0.55 (RMSEa = 1.85 m2·ha−1), hardwood BA R2adj = 0.67 (RMSEa = 1.23 m2·ha−1), and conifer BA R2adj = 0.52 (RMSEa = 0.94 m2·ha−1). Use of winter Landsat imagery was key to quantifying these important forest biophysical parameters — a tool that carries the potential to transform our understanding of the impact of human and natural disturbance regimes on northern forest ecosystems.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3