Mechanisms and consequences of large artery rigidity

Author:

Et-Taouil Karima,Safar Michel,Plante Gérard E

Abstract

In this review paper, the classical and more recently described mechanisms responsible for the structural and functional characteristics of large artery rigidity are described. Mostly important, these characteristics appear to be nonspecific to the primary disease process involved in arterial hypertension, diabetes mellitus, dyslipidemia, congestive heart failure, chronic uremia, and perhaps senescence, including vascular dementia. Nonspecific in terms of aetiology, the vasculopathy encountered in these diseases exhibits common structural and functional abnormalities. The identification of such abnormalities could well become the target of potent nonpharmacological and (or) pharmacological interventions capable of preventing or retarding morbidity and mortality. The structural characteristics responsible for large artery rigidity include smooth muscle cell hypertrophy, matrix collagen deposition, and recently described, dysfunction in proteoglycan metabolism. Functional abnormalities, such as bradykinin-dependent hyper-reactivity of smooth muscle cells and vasa vasorum microcirculation network disturbances, also appear to alter aortic wall rigidity. The physiopathology of target organ damage is then revisited, based on endothelial dysfunction, documented in large and resistance arteries, as well as in microcirculation networks, where altered permeability to macromolecules leads to interstitial matrix disorganization and cell damage. The clinical evaluation of large artery rigidity is described, and one of the noninvasive methods, evaluation of pulse-wave velocity, is validated in normal conditions and in disease processes. Finally, nonpharmacological and pharmacological therapeutic measures are presented, and includes physical exercise to reduce insulin resistance, and renin–angiotensin-II–aldosterone modulators.Key words: large artery compliance, aortic structure, collagen, elastin, proteoglycans, vascular smooth muscle cells, vasa vasorum, target organ damage, pulse wave velocity, vascular pharmacology.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3