Freeze-fracture electron microscopic studies of age-related plasma membrane changes in Sporothrix schenckii

Author:

Maeda Manabu,Kitajima Yasuo,Shikano Yukiko,Mori Shunji

Abstract

Characteristics of the plasma membrane of Sporothrix scheckii cells as revealed by freeze-fracture techniques have been classified into eight types (Y1, Y2a, Y2b, Y3a, Y3b, Y4a, Y4b, and Y5) in yeastlike cells grown under the following two conditions: brain heart infusion agar medium at 27 °C, and brain heart infusion agar medium at 37 °C. Type Y1 cells are yeastlike cells having smooth plasma membranes without any invagination. Typical characteristics of the other types are as follows: type Y2a, smooth plasma membranes with few trenchlike invaginations; type Y2b, wavy plasma membranes with few oval or irregularly formed invaginations; type Y3a, plasma membranes with many randomly distributed trenchlike invaginations; type Y3b, plasma membranes with many cocoonlike or irregularly formed invaginations; type Y4a, plasma membranes with longer trenchlike invaginations; type Y4b, plasma membranes with irregularly formed, enlarged invaginations; and type Y5, smooth or wavy plasma membranes with aggregations of intramembranous particles and with many vacuoles between cell walls and plasma membranes or in the cytoplasm in some cells. By counting the proportion of each type of yeastlike cell under the two conditions and with different cultivation periods, it appears that plasma membrane types change as aging progresses in the following order: type Y1, Y2a, Y3a, Y4a, and Y5 in conidia and type Y1, Y2b, Y3b, Y4b, and Y5 in yeastlike vegetative cells. These observations provide us with an important advantage when studying the effects of antifungal agents on the plasma membrane of Sporothrix scheckii, as it is important to know the natural course of changes in membrane structure during aging.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3