Patterns of stability and change in the maize genome: a case study of small RNA transcriptomes in two recombinant inbred lines and their progenitors

Author:

Minow Mark A.A.1,Lukens Lewis2,Rossi Vincenzo3,Colasanti Joseph1

Affiliation:

1. Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.

2. Plant Agriculture Department, University of Guelph, Guelph, Ontario, Canada.

3. Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, I-24126 Bergamo, Italy.

Abstract

Small RNAs (sRNAs) are epigenetic regulators of eukaryotic genes and transposable elements (TEs). Diverse sRNA expression patterns exist within a species, but how this diversity arises is not well understood. To provide a window into the dynamics of maize sRNA patterning, sRNA and mRNA transcriptomes were examined in two related Zea mays recombinant inbred lines (RILs) and their inbred parents. Analysis of these RILs revealed that most clusters of sRNA expression retained the parental sRNA expression level. However, expression states that differ from the parental allele were also observed, predominantly reflecting decreases in sRNA expression. When RIL sRNA expression differed from the parental allele, the new state was frequently similar between the two RILs, and similar to the expression state found at the allele in the other parent. Novel sRNA expression patterns, distinct from those of either parent, were rare. Additionally, examination of sRNA expression over TEs revealed one TE family, Gyma, which showed consistent enrichment for RIL sRNA expression differences compared to those found in parental alleles. These findings provide insights into how sRNA silencing might evolve over generations and suggest that further investigation into the molecular nature of sRNA trans regulators is warranted.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-omics revolution to promote plant breeding efficiency;Frontiers in Plant Science;2022-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3